
Theor Chim Acta (1994) 88:35-46 Theoretica 
Chimica Acta 
© Springer-Verlag 1994 

S t a t i s t i c a l  e l e c t r o n  c o r r e l a t i o n  - coe f f i c i en t s  

and  - ho l e s  in m o l e c u l e s *  

Jiahu Wang and Vedene H. Smith, Jr. 
Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada 

Received January 4, 1993/Accepted July 2, 1993 

Summary. Electron correlation in the H2, LiH and BH molecules has been 
analyzed in terms of the statistical correlation coefficients introduced by Kutzel- 
nigg, Del Re, and Berthier. Angular, radial (in-out), longitudinal (left-right) and 
transverse correlation coefficients have been evaluated from both self-consistent- 
field (SCF) and configuration interaction (CI) wave functions. It has been found 
that these coefficients reflect fairly well the correlation behavior in the molecular 
system. The lack of spherical symmetry in molecular densities adds new features to 
these correlation coefficients and this information can be useful for the study of 
electronic structure in molecules. The correlation hole function, Fermi and 
Coulomb holes in these systems have also been calculated and discussed. 
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I Introduction 

Electron correlation is a frequently used term in quantum chemistry. It signifies the 
instantaneous interaction of electrons in atomic and molecular systems. Therefore 
it seems natural to study this correlation effect by a statistical approach. Neverthe- 
less, the same term has long been referred to as the difference between the exact and 
Hartree-Fock (HF) energies [1] or the electron pair densities [2, 3]. In the HF 
scheme, due to the antisymmetrizing of the wave function, electron correlation has 
been partially taken into account. This part of correlation involves electrons of the 
same spin only. The difference between a HF pair density and a purely independent 
particle pair density is usually referred to as the Fermi hole. Other parts of electron 
correlation account mostly for the interaction of electrons with different spins and 
the hole produced is commonly called the Coulomb hole [4, 5]. It is clear that the 
statistical correlation will include both the Fermi and Coulomb holes. 

Statistical correlation between electrons can be studied in a variety of ways, such 
as analyzing electron correlation holes [4-9]  or examining the pair correlation 
density itself [10-15]. However, these quantities are in general functions of up to 

* Dedicated to Professor Werner Kutzelnigg on the occasion of his sixtieth birthday 
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six variables (the spatial coordinates of two particles) and as expected are quite 
complicated to visualize. There have been a few approaches proposed which can 
tackle this problem to certain degrees. For the pair correlation density, Banyard 
and coworkers [10, 16] display the pair density around a prelocated electron and 
thus partial correlation holes are readily shown. Another common approach is to 
transform the two electron positions into intracule and extracule coordinates 1,17] 
and analyze electron correlation effects through intracule and extracule densities 
[14-18]. The statistical correlation coefficients introduced by Kutzelnigg, Del Re, 
and Berthier 1-19] provide overall measures of correlation in the systems. These 
simple indices have proven to be quite valuable for analyzing electron correlation 
in atomic systems [20, 21]. 

In the present paper, we apply the ideas of Kutzelnigg et al. [19] to some linear 
molecules. The correlation coefficients are analyzed along with other common 
approaches, namely correlation hole functions, Fermi and Coulomb holes. The H 2, 
LiH and BH molecules have been chosen for illustration. The 3-21G and the 
6-31G** basis sets [22] are used. For H2, the two H atoms are placed at 
z = __+ 0.7040ao. For LiH and BH, the heavier atom is set at the origin, and the 
H atom at z = 3.0992a0 and 2.3219ao respectively which corresponds to the 
opitimized geometry at the H F  level with the 3-21G basis sets [13]. The CI wave 
function includes all the single and double substitutions from the ground state SCF 
wave function and therefore is denoted as SDCI. Hartree atomic units 1-23] are 
employed throughout this paper. 

2 Statistical electron correlation coefficients 

In the statistical sense electron correlation is the manner in which the electron pair 
density differs from the product of the one-electron densities. The spin-traced pair 
density is defined by: 

D2(71,72) = f ~ * ( X 1 ,  X2,  " " " , X N ) ~ ( ~ I ,  X 2 , "  " " , ~Qq)dtrldtr2dxa " " " dxN, 

(1) 

where xi = (7i, ai) is a combined space-spin coordinate of electron i. The one- 
electron density can be constructed from the pair density by integrating over the 
second particle: 

Dl(r i )  = fo2(71, 72)dr2. (2) 

Both pair and one-electron densities are normalized to unity: 

f D2(~l,-~2)d71d72 = fDl(71)d71=1.  (3) 

Statistical correlation is measured by the difference function c(~1,72), which is 
given as: 

c(71,72) = D2(rl, 72) -- Di (Tx)D1 (72). (4) 

Two particles are said to be not correlated if c(T1,72) = 0. In this case, the pair 
density of electrons 1 and 2 is equal to the product of their individual one-electron 
densities. 
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Kutzelnigg et al. [19] use concepts from probability and statistical theory to 
define a generalized correlation coefficient for a function f ( ; )  in position space 
(similar correlation coefficients may be defined in momentum space [19]): 

( f ( ;1 ) f ( ;2 ) )  - ( f ( ; ) ) 2  
"cy - ( f 2 ( ; ) )  _ ( f ( 7 ) ) 2  (5) 

In the above equation, the expectation values of the function f (7 )  are defined by: 

= fD2(;1, ;2)f(;1)f(;2)d;ld;2,  (6) ( f ( ; 1 ) f ( ; 2 ) )  

( f ( ; ) )  = f D1 ( ; ) f ( ;  )dL (7) 

It is obvious that when electrons are not correlated, the correlation coefficient for 
the function f ( ; )  will be zero. However, the inverse statement is not true, a vanish- 
ing correlation coefficient does not necessarily mean that there is no correlation. 
Further details will be discussed below. 

2.1 Angular correlation coefficients 

Kutzelnigg and his colleagues [19] define the correlation coefficient z~ by setting 
the function f ( ; )  = ; in Eq. (5), i.e.: 

(;1 ";2) - ( ; ) 2  
z~ = ( ; 2 ) _  ( ; )2  (8) 

According to probability theory, zv is bounded in magnitude by unity: 

- 1 ~< z~ ~< 1. (9) 

In an atomic system, with the natural choice of the origin at the nucleus, the ( ; )  
vanishes. The correlation coefficient defined in Eq. (8) essentially measures the 
angular correlation between the position vectors of two electrons: 

(;~ ";5 ) 
"to- ( ; 2 )  

(rlr2cosO) 
- ( r 2 )  (10) 

An even simpler angular correlation coefficient has also been used by defining 
f ( ; )  = ;/r [20, 24]: 

Z~lr = (cos 0).  (11) 

In Eq. (10), if;2 = a;1 + b, it is easy to show that zo = 1 or - 1 depending on 
the sign of the constant a. When zo = 1, the position vectors of the two electrons in 
a pair are expected to coincide and a perfect positive correlation results. On the 
other hand, when zo = -  1, the two vectors will always be expected to have 
opposite directions and this defines the perfect negative correlation. A value of 
z0 = 0 can mean either no angular correlation at all between the two position 
vectors or that they correlate in special ways, for instance, the two vectors always 
form angles 0 = _+ g/2. 
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In molecules, the choice for the origin is no longer straightforward and the 
interpretation of z~ as an indicator of the angular correlation is not quite accurate. 
Since the origin of the system is allowed to shift in Eq. (8), T~ still can be related to 
the angular correlation of two electrons by introducing new position vectors (with 
7' = 7 - (7)).  However, the angle formed by the new vectors is in general not the 
same as that defined by 71 and 72 and this will cause difficulties for the comparison 
of z~ between two sets of wave functions. (Note that the momentum space counter- 
part does not share this problem because the origin is well defined for atoms and 
molecules alike [25] and ( ~ )  = 0). Nevertheless, for the sake of simplicity, we still 
call z~ the angular correlation coefficient and use z~ and Zo interchangeably in the 
following discussion. 

The angular correlation coefficients of H2 have been calculated from full CI 
wave functions with 3-21G and 6-31 G* * basis sets [22] and tabulated in Table 1. 
No corresponding values from a HF level treatment are shown in the table. They 
are simply zero because there is no correlation in this case. With the full CI wave 
functions, the two electrons in H2 undergo negative angular correlation. The two 
position vectors are more likely t o  have angles between n/2 and 3n/2. With 
polarization functions included in the basis sets, the angular correlation coefficient 
becomes even smaller. The value with the 6-31G** basis set is closer to the one 
calculated from a much better correlated wave function [26], as shown in Table 1. 

The angular correlation coefficients of LiH and BH are shown in Table 2 for 
SCF wave functions and in Table 3 for SDCI wave functions. In LiH and BH, there 
is nonvanishing angular correlation even at the HF level because of the presence of 
Fermi correlation between electrons of the same spin. It is interesting to note that 
this angular correlation coefficient decreases in absolute value for LiH and in- 
creases for BH from the HF to SDCI treatments with the 3-21G basis sets. The 
large negative angular correlation of LiH at the SCF level is largely due to its 
electronic structure. Previous studies [15] show that there is substantial charge 
transfer in LiH at the SCF level. The molecule hence displays quite a large amout of 
ionic character (Li+H-). Electron correlation has been found to shift electrons 
from H back to Li. This causes redistribution of electrons in the molecular system 
and the main effect of introducing elecron correlation is to relax the angular 
coupling of the electrons. The lack of flexibility of the 3-21G basis set is another 
reason for decreasing negative angular correlation in LiH comparing the SDCI 
correlation coefficients with the HF ones. When the more flexible and extended 
6-31G** basis sets have been employed, both LiH and BH show the same 
tendency for the angular correlation change; i.e., the angular correlation coeffic- 
ients become smaller as electron correlation has been taken into consideration. 

Tab le  1. E l e c t r o n  c o r r e l a t i o n  coefficients for  H 2  f r o m  the  full CI  wave  

func t ions  

3 - 2 1 G  6 - 3 1 G * *  K W  t 

% - 0 . 0 7 8 5 1  - 0 . 0 8 1 2 4  

z ,  - 0 . 1 8 5 4 7  - 0 . 1 6 4 1 2  
zb - 0 .07370 - 0 .07537 

z l / r  0 .02788 0 .03302 

z, - 0 .07620 - 0 .10156 

- 0 .10597 

- 0 .15605 
- 0 .07234 

*: C a l c u l a t e d  f r o m  the  e x p e c t a t i o n  va lues  in [26 ]  
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Table 2. Electron correlation coefficients for LiH and BH from the SCF wave functions 

39 

LiH BH 
3-21G 6-31G** 3-21G 6-31G** 

zo -0.12761 --0.13000 --0.06867 -0.07054 
z~ -0.22344 --0.22643 --0.12180 -0.12534 
zb --0.10802 --0.11268 -0.08222 -0.08268 
zl/, -0.09347 --0.08908 -0.06846 -0.06557 
~, --0.24503 -0.25079 --0.11540 --0.11676 

Table 3. Electron correlation coefficients for LiH and BH from the SDCI wave functions 

LiH BH 
3-21G 6-31G** 3-21G 6-31G** 

v0 -0.12472 -0.13548 -0.08121 -0.08908 
zz - 0.22281 - 0.22818 - 0.12356 - 0.12906 
Zb --0.14292 --0.14540 --0.09119 --0.09301 
Z~/, --0.09360 --0.08916 --0.06856 --0.06579 
zr -- 0.24564 -- 0.25393 -- 0.12798 -- 0.13005 

2.2 Radial correlation coefficients 

The radial correlation coefficient can be introduced in this case as a measure for the 
in-out interaction: 

( r l r 2 )  -- ( r )  2 
z~ = ( r 2 )  _ ( r ) 2  (12) 

A similar quantity associated with the radial correlation is also defined by 
setting f (7 )  = 1/r. The correlation coefficient zl/r is obtained by replacing r with 1/r 
in Eq. (12). These two radial correlation indices are supposed to show similar 
behavior, but the following numerical values for H2 provide an exception. This 
may result from the fact that r and 1/r weight the space differently. The former one 
will emphasize the outer regions more, whereas the latter tends to weight the inner 
regions heavily. 

For  molecular systems, the radial quantities are origin dependent. The correla- 
tion coefficient, without exception, is also dependent on the choice of origin. Even 
though the radial correlation coefficient is not uniquely defined in molecular 
systems, it is still quite useful for making much easier the comparison of correlation 
behavior in atomic and molecular systems. 

In Table 1, the radial correlation coefficients, zr and zl/r, are given for H2 with 
the origin at the bond midpoint and in Tables 2 and 3 for LiH and BH with origins 
on the respective heavier atom. The calculated z, and z~/, for H2 vanish at the SCF 
level and show opposite changes for the full CI treatment. Actually, electron 
correlation in H2 shows two main effects relating to the radial electron motion. 
There is more covalent nature in the CI density and this contributes to a positive 
correlation coefficient because the origin is located at the center of the two atoms. 
At the same time, inclusion of Coulomb correlation of the electrons will eliminate 
the possibility of two electrons being at the same location (which results in 
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a positive radial correlation coefficient) to a great extent and the electrons will tend 
to have different radii. As z, weights more the outer region, it will likely be negative 
and is so for H2 (full CI), LiH and BH. The coefficient zlj, depends on the inner 
regions more heavily and it is found to be positive for H2 and negative for LiH and 
BH. Electron correlation has been found to cause much smaller radial pair shifts in 
LiH than in BH (see Fig. 11 in [14]), which is in good agreement with the finding 
from the radial correlation coefficient. The radial correlation coefficient changes 
are significantly smaller in LiH than in BH from the SCF (Table 2) to the SDCI 
(Table 3) treatments. Note that different choices of the origin may lead to different 
values for the radial correlation coefficients, but the information revealed will be 
similar. 

2.3 Longitudinal correlation coefficients 

For molecular systems, electron pair densities display anisotropy. Even though the 
angular and radial correlation coefficients are useful in these situations, other 
correlation coefficients may be more appropriate. For linear molecules, due to the 
cylindrical symmetry, longitudinal, and transverse pair densities are convenient for 
analysis. By introducing the cylindrical coordinates (b, z, co), the pair density 
D2(71,72) can be projected onto the longitudinal and transverse directions. These 
projected pair densities are called longitudinal and transverse pair densities, respec- 
tively: 

t ~  

L2(zl,  z2) -- 1D2(71, 72)bl b2dbl dcol db2dco2 
.) 

= 47r 2 .fD2(rt ,  72)bl b2dbl db2, (13) 

_ T2(bl, b2) = fO2(T1, 72)dzl dogldz2dco2 

-- 47Z 2 fD2(Ti, 72)dzl dz2. (14) 

Similarly, the longitudinal and transverse one-electron densities are defined by: 

LI(Zl) -- 2~: ~Dl(rl)bldbl, (15) 

Tl(bl) = 2n fol(71)azl. (16) 

Following the same procedure, Kutzelnigg et al. [19] define the longitudinal 
correlation coefficient zz by: 

< z ~ z 2 >  - < z >  ~ 
zz = ( z 2 > _  (z>2 • (17) 

For linear molecules, the longitudinal direction coincides with the bonding axis. 
As a result, the longitudinal correlation coefficient is pertinent to show the inter- 
twined information regarding chemical bonding and electron correlation. By 
comparing the % values for LiH from SCF and SDCI wave functions, we see 
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a decrease in magnitude for this quantity with the 3-21G basis set. The explanation 
for this change is same as that for the angular correlation discussion for this same 
molecule. Electron correlation causes electron transfer from H back to Li and thus 
there is less longitudinal correlation from the SDCI treatment. Less flexbility of the 
3-21G basis set is another reason. With the better basis set 6-31G* *, this longitu- 
dinal correlation coefficient decreases when electron correlation is included. 

2.4 Transverse correlation coefficients 

The transverse correlation coefficient has been introduced to measure the correla- 
tion on the equatorial plane. It is written as: 

( b l b 2 ) - ( b >  2 
*b = (b2 )  _ (b)2  (18) 

The numerical values of Zz for H2, LiH, and BH are tabulated in Tables 1, 2, and 3, 
respectively. It has been found that there are substantial increases of negative 
transverse correlation for H2, BH and especially LiH when SDCI instead of SCF 
wave functions are used. 

Compared with those computed at the 3-21G basis set, the higher angular 
functions in the 6-31G* * basis sets dearly enhance the negative transverse correla- 
tion in the H2 molecule. Both the values are not very far from the one computed 
from the expectation values reported by Kolos and Wolniewicz [26]. 

3 Electron correlation holes 

If a reference electron is located at position 71, the correlation hole function is 
defined by [4, 5, 12]: 

¢(F1, ;2) = c(FI' F2~) -- D2(71' 72) Dl(71). (19) 
Di(72) Di(72) 

Thus defined correlation hole function allows us to study both the Fermi and 
Coulomb correlations. When the pair density is predicted with the HF  wave 
function, the corresponding correlation hole involves electrons of the same spin 
only, i.e. only Fermi correlation. With CI type wave functions, ¢ will recover both 
Fermi and Coulomb correlations. 

Generally, the correlation hole function in molecules does not display spherical 
symmetry. The anisotropic holes are commonly displayed [15, 16]. For linear 
molecules, longitudinal and transverse correlation holes can be introduced. 

The correlation hole function may be alternatively introduced through prob- 
ability theory. The conditional one-electron density is given as the pair densities 
divided by the regular one-electron density; i.e.: 

L](zl, z2) = L2(zl, z2)/Li(z2) (20) 

for the conditional longitudinal charge density and: 

T~(bi, b2) = T2(bl, b2)/Ti(b2) (21) 

for the conditional transverse charge density. 
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Fig. ia-d. The longitudinal pair density (a) and conditional longitudinal one electron density (b) of 
H2 of at the SCF level. Their full CI counterparts are presented in (e) and (d), respectively 

The correlation hole in this case is simply the difference between the conditional 
one-electron density and the regular one-electron density, same as that defined by 
McWeeny I-4, 5]. The longitudinal correlation hole is written as: 

{~(zl, z2) = L](z l ,  z2) - Ll(z l ) ,  (22) 

and similarly, the transverse correlation hole is written as: 

~r(bl ,  bE) = T~(b~, b2) - T~(b~). (23) 

Figure la  shows the longitudinal pair density L2(zl,  Z2) of H 2 at the H F  level. 
There are four peaks located at the diagonal and off-diagonal positions. The 
densities at the diagonal positions signify two electrons having the same z coordi- 
nate, whereas the densities at the off-diagonal positions show the probability of two 
electrons at different centers. The former peaks result from the ionic electron 
configuration ( H - H  + ), and the latter peaks from the covalent configuration. The 
corresponding conditional charge density is displayed in Fig. lb, the electron 
charge density of the electron (with z 1 coordinate) is not dependent on the position 
(z2) of the second electron, as revealed by the vanishing correlation coefficient in 
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Sect. 2. This means that in the HF treatment, H2 is an exacly independent system, 
which is quite clear because there is no Fermi correlation present in the single state 
of a two-electron system. 

In Fig. lc, the longitudinal pair density from the SDCI wave function is 
displayed. There is a large difference between this figure and Fig. la. The two 
off-diagonal peaks have been reproduced here. However, the diagonal peaks shrink 
to shoulders, which implies that the weight of the ionic configuration decreases. 
Figure ld shows the conditional longitudinal charge density. We see dearly the 
correlation between the two electrons. The charge density of one electron (with 
zl as coordinate) changes with the position (z2) of the second electron. There is 
a strong tendency for them not to be situated on the same center. 

The longitudinal pair density of LiH with the HF wave function is shown in 
Fig. 2a. The diagonal peaks, at about (0, 0) and (3ao, 3ao), are readily assigned to 
pairs on the Li and H atoms, respectively. The pairs arising from electrons on 
different centers account for the two off diagonal peaks (0, + 3ao). The conditional 
longitudinal density is shown in Fig. 2b. We see that due to the Fermi correlation, 
the conditional charge densities of one electron is dependent on the position of the 
second electron even at the HF level. However, it seems that Fermi correlation only 
shows a large effect in the vicinity of the Li nucleus. The other parts still exhibit 
essentially independent behavior. The Fermi correlation decreases the probability 
to find simultaneously two electrons around the Li atom. The Fermi hole is clearly 
seen at (0, 0) in Fig. 2c. 

The conditional longitudinal charge density of LiH with the SDCI wave 
function is shown in Fig. 2e. Visible changes happen at the position (3ao, 3ao). The 
density at this point decreases as compared with that in Fig. 2b. This turns it into 
a saddle point. Another small change happens at (0, 3ao), the density at this point 
increases from the SCF to the SDCI treatments. Note that the ridge in the 
neighborhood of (0, 3ao) is flat in the SCF case (Fig. 2b) and is slightly concave in 
the SDCI (Fig. 2e). These observations imply that with inclusion of Coulomb 
correlation, the probability to find two electrons simultaneously around the 
H atom decreases, whereas the probability to locate two electrons on different 
centers increases. This also demonstrates that in the HF treatment, the ionic 
configuration has been overestimated, which is in agreement with the findings from 
the analysis of the correlation coeffcients. 

The total correlation hole function is displayed in Fig. 2f. Besides the Fermi 
hole seen in Fig. 2c at (0, 0), a shallow hole is found at (3ao, 3a0), the location of H. 
It is largely due to Coulomb correlation between a bonding electrons around the 
H atom. 

The longitudinal correlation in BH is displayed in Fig. 3a-3f. Compared 
with the LiH densities, the BH counterparts are more compact due to the 
higher nuclear charge of B and less ionic character for its electronic structure. 
Other features include a significant accumulation of densities at the off-bonding 
side of B and sharp changes of the pair density around the B nucleus (0, 0), 
as shown in Fig. 3a. The strong Fermi correlation leads to a substantial decrease 
of density around the B nucleus, especially in the off-bond directions (see 
Fig. 3c). No visible Fermi correlation is found around the H nucleus (2.3ao, 2.3ao) 
at the SCF level. At the SDCI level, the longitudinal pair density is predicted 
to be broader and the correlation to be extended farther from the B nucleus. 
This observation is in line with the previous study [14]. Around the H 
nuclear position (2.3ao, 2.3ao), Coulomb correlation results in a shallow hole 
(Fig. 3f). 
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Fig. 2a-f. The longitudinal pair density (a), conditional longitudinal one electron density (b), the 
longitudinal Fermi hole (e) of LiH at the SCF level. Their SDCI counterparts are presented in (d), (e) and 
(f) (shows both Fermi and Coulomb holes), respectively 
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Fig. 3a-f.  The logitudinal pair density (a), conditional longitudinal one electron density (b), the 
longitudinal Fermi h01e (e) of BH at the SCF level. Their SDCI counterparts are presented in (d), (e) and 
(f) (shows both  Fermi and Coulomb holes), respectively 
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4 Conclusion 

The statistical electron correlation coefficients have been calculated for three 
simple linear molecules. It has been shown that these numerical correlation indices 
can reflect the electron motions in complex systems. The correlation hole function 
provides a visible approach to the same problem. The former is easy to use and to 
generalize, whereas the latter has its own merits. The pictorial approach of the 
latter could bring such an abstract concept as electron correlation closer to 
chemical intuition. 

Here we have presented a preliminary study of the statistical correlation 
coefficients introduced by Kutzelnigg et al. [19] to molecular systems. Since 
electron correlation analysis requires high quality basis sets and more sophisticated 
treatments, in our future work, both the one- and N-particle basis sets and their 
effects on the correlation coefficients will be investigated. 
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